Approximative formulae for errors in iteration methods
نویسندگان
چکیده
منابع مشابه
islanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولApproximative Methods for Monotone Systems of Min-Max-Polynomial Equations
A monotone system of min-max-polynomial equations (min-maxMSPE) over the variables X1, . . . , Xn has for every i exactly one equation of the form Xi = fi(X1, . . . , Xn) where each fi(X1, . . . , Xn) is an expression built up from polynomials with non-negative coefficients, minimumand maximum-operators. The question of computing least solutions of min-maxMSPEs arises naturally in the analysis ...
متن کاملIshikawa Iteration Process with Errors for Nonexpansive Mappings
We study the construction and the convergence of the Ishikawa iterative process with errors for nonexpansive mappings in uniformly convex Banach spaces. Some recent corresponding results are generalized. 2000 Mathematics Subject Classification. 47H10, 40A05.
متن کاملIteration Complexity of Feasible Descent Methods Iteration Complexity of Feasible Descent Methods for Convex Optimization
In many machine learning problems such as the dual form of SVM, the objective function to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining the complexity of some commonly used optimization algorithms. In this paper, we proved the global linear convergence on a wide range of algorithms when they are applied to some non-strongly convex problems. In partic...
متن کاملLeast-squares methods for policy iteration
Approximate reinforcement learning deals with the essential problem of applying reinforcement learning in large and continuous state-action spaces, by using function approximators to represent the solution. This chapter reviews least-squares methods for policy iteration, an important class of algorithms for approximate reinforcement learning. We discuss three techniques for solving the core, po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1966
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1966.103041